

CHEFIX - VE-PLUS

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-22/0760 of 2022/11/07

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Vinylester Resin without Styrene fast curing chemical anchor VE-SF

Product family to which the above construction product belongs:

Bonded injection type anchor for use in concrete: sizes M8 to M24, rebar 8 to 25 mm

Manufacturer:

Damesa

C/Garraf 10-12 Poligono Industrial Pla de la

Bruguera

E-08211 Castellar del Vallès Internet www.damesa.com

Manufacturing plant:

Factory Plant 1

This European Technical Assessment contains:

20 pages including 15 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"

This version replaces:

CHEFIX - VE-PLUS

Page 2 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

CHEFIX - VE-PLUS

Page 3 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Vinylester Resin without Styrenefast curing chemical anchor is a bonded anchor (injection type) for concrete consisting of a cartridge with Lucius injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter 8 to 25mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

CHEFIX - VE-PLUS

Page 4 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

- 3 Performance of the product and references to the methods used for its assessment
- 3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete" option 1 and 7.

CHEFIX - VE-PLUS

Page 5 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

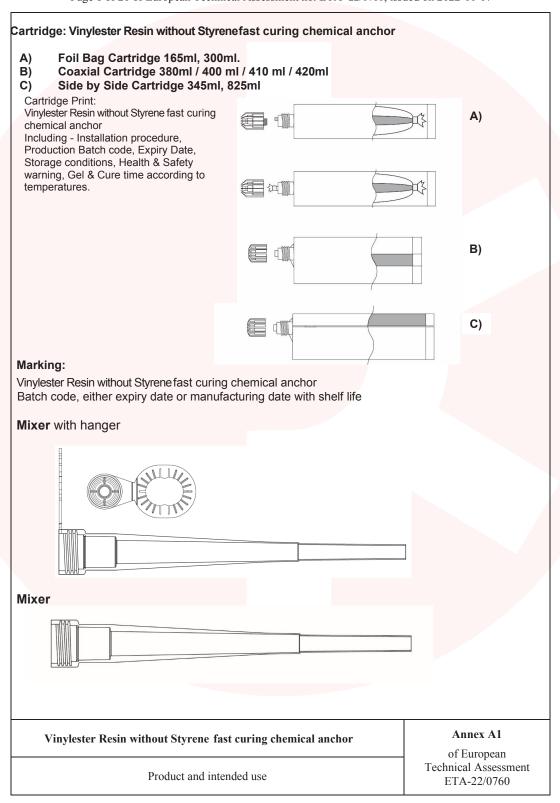
4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

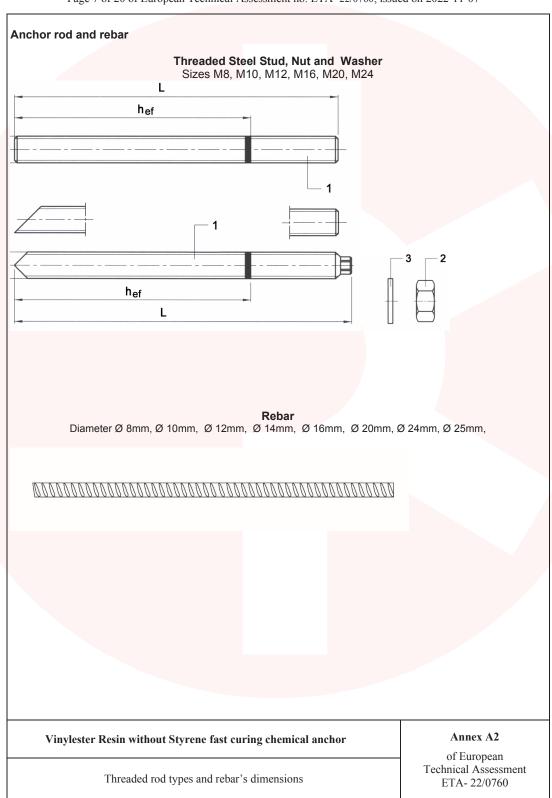
5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.


Issued in Copenhagen on 2022-11-07 by

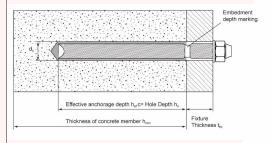
Thomas Bruun
Managing Director, ETA-Danmark

CHEFIX - VE-PLUS


Page 6 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

CHEFIX - VE-PLUS

Page 7 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07


CHEFIX - VE-PLUS

Page 8 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Installed Anchor and Intended Use

Table A1: Installation details for anchor rods

Anchor size			M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Range of anchorage depth hef	min	[mm]	60	60	70	80	90	100
and bore hole depth h₀	max	[mm]	96	120	144	192	240	288
Nominal diameter of drill bit	d _o	[mm]	10	12	14	18	22	28
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
Maximum torque moment	T _{max}	[Nm]	10	12	20	40	70	90
Minimum thickness of concrete member	h _{min}	[mm]		ef + 30m ≥ 100mn			h _{ef} + 2d)
Minimum spacing	Smin	[mm]	40	40	60	75	95	115
Minimum edge distance	Cmin	[mm]	35	40	45	50	60	65

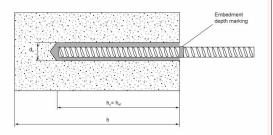


Table A2: Installation details for rebar

Rebar size (mm)			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 24	ф 25
Diameter of element	d	[mm]	8	10	12	14	16	20	24	25
Range of anchorage depth hef	min	[mm]	60	60	70	75	80	90	100	100
and bore hole depth h₀	max	[mm]	96	120	144	168	192	240	288	300
Nominal diameter of drill bit	Do	[mm]	10/12	12/14	14/16	16/18	20	25	28	30
Minimum thickness of concrete member	h _{min}	[mm]		ef + 30m ≥ 100mn			-	h _{ef} + 2d	0	
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	120	120
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	120	120

Vinylester Resin without Styrene fast curing chemical anchor	Annex A3
Installation details for threaded studs and rebar	of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS

Page 9 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Designation	Material						
Threaded rods made of z	inc coated steel						
	Strength class 4.6 to 12.9 EN ISO 898-1						
Threaded rod M8 – M24	Steel galvanized ≥ 5µm EN ISO 4042						
	Hot dipped galvanized ≥ 45µm EN ISO 10684						
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684						
Nut	Strength class 8 EN ISO 898-2						
EN ISO 4032	Steel galvanized ≥ 5µm EN ISO 4042						
EN 150 4032	Hot dipped galvanized ≥ 45µm EN ISO 10684						
Threaded rods made of s	tainless steel						
Threaded rod M8 – M24	Strength class 50, 70 or 80 EN ISO 3506;						
Threaded fod Mo – M24	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088						
Washer	Chairless should 4404, 4 4404, 4 4570, 4 4574, 4 4400, 4 4000 FN 40000						
ISO 7089	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088						
Nut	Strength class 70 and 80 EN ISO 3506-1;						
EN ISO 4032	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088						
Threaded rods made of h	igh corrosion resistant steel						
	Strength class 70 or 80						
Threaded rod M8 – M24	$R_m = 800 \text{ N/mm}^2$; $R_{p0,2}=640 \text{ N/mm}^2$						
	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
Washer ISO 7089	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
Nut	Strength class 70 EN ISO 3506-2;						
EN ISO 4032	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
Rebars							
Rebars \$\psi 8\$ to \$\psi 25\$	class B and C of characteristic yield strength fyk from 400 MPa to 600 MPa						

Vinylester Resin without Styrene fast curing chemical anchor	Annex A4
Materials	of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS

Page 10 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M24, Rebar Ø8 to Ø25

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and non-cracked concrete: M8 to M24, Rebar Ø8 to Ø25.

Temperature Range:

• T: -40 °C to +40 °C (max long-term temperature +24 °C and max short -term temperature +40 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A4, Table A1: CRC II
 - Stainless steel A4 according to Annex A4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A4, Table A1: CRC V (for marine environment)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · The Anchorages are designed in accordance with:
 - EN 1992-4:2018
 - Technical Report TR055, edition 2018

Installation:

- Dry and wet concrete.
- · Flooded holes (not sea water).
- Hole drilling by hammer drilling (HD) or compressed air drilling (CD) used in Category 1 (dry and wet concrete) and Category 2 (flooded holes)
- Hole drilling by hollow drill bits for dust free drilling (HDB) (e.g. Bosch self-cleaning system including vacuum cleaner) used in Category 1 – dry and wet concrete
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Vinylester Resin without Styrene fast curing chemical anchor	Annex B1
Intended use - Specification	of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS

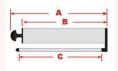

Page 11 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Table E	31:	Installation	data
---------	-----	--------------	------

Threaded rod	Size	Nominal drill bit diameter d _o (mm)	Steel Brush	С	leaning method	is
and rebar	0126	7		Hollow drilling with vacuum cleaner (HDB) Manua cleanin (MAC)		Compressed air cleaning (CAC)
	M8	10	10 mm		h _{ef} ≤ 80 mm	
Studs	M10	12	12 mm		h _{ef} ≤ 100 mm	
	M12	14	14 mm	No cleaning	h _{ef} ≤ 120 mm	Yes
	M16	18	18 mm	needed	h _{ef} ≤ 160 mm	
_	M 20	22	22 mm		h _{ef} ≤ 200 mm	
	M 24	28	28 mm		h _{ef} ≤ 240 mm	
	8 mm	10 or 12	10 or 12 mm		h _{ef} ≤ 80 mm	
	10 mm	12 or 14	12 or 14 mm		h _{ef} ≤ 100 mm	
Rebar	12 mm	14 or 16	14 or 16 mm		h _{ef} ≤ 120 mm	
	14 mm	16 or 18	16 or 18 mm	No cleaning	h _{ef} ≤ 140 mm	Yes
	16 mm	20	20 mm	needed	h _{ef} ≤ 160 mm	res
_	20 mm	24	24 mm		h _{ef} ≤ 200 mm	
_	24 mm	28	28 mm		h _{ef} ≤ 240 mm	
	25 mm	30	30 mm		h _{ef} ≤ 250 mm	

Manual Cleaning (MAC):

Hand pump recommended for Blowing out bore holes with diameters d₀≤ 24 mm and bore holes depth h₀≤10d

Hollow Drilling and Vacuum (HDB) (e.g. Bosch®)

Compressed air cleaning (CAC):

Recommended air nozzle with an Orifice opening of minimum 3,5mm in diameter

Steel brush just for manual cleaning and CAC (not needed for HDB)

Vinylester Resin without Styrene fast curing chemical anchor

Intended use - data

Annex B2

of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS

Page 12 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Table B2: Minimum curing time

Minimum base material temperature C°	Gel time (working time) In dry/wet concrete STANDARD VERSION	Gel time (working time) In dry/wet concrete TROPICAL VERSION	Curing time in dry concrete	Curing time in wet concrete or flooded holes
0°C T _{base material} < 10°C	20 min	20 min	90 min	180 min
10°C T _{base material} < 20°C	9 min	15 min	60 min	120 min
20°C T _{base material} < 30°C	5 min	10 min	30 min	60 min
30°C T _{base material} 40°C	3 min	8 min	20 min	40 min

The temperature of the bond material must be ≥ 20°C

Resin injection pump de Image	Size Cartridge / Code	Туре
A Company of the Comp	165 / 300ml	Manual
	345 / 380 / 400 / 410 / 420ml	Manual
nun	165 / 300 / 345 / 380 / 400 / 410 / 420ml 7.4v Tool	Battery
B	165 / 300 / 380 / 400 / 410 / 420ml	Drill Adaptor
	380 / 400 / 410 / 420 / 825ml	Pneumatic
Vinylester Resin witho	out Styrene fast curing chemical anchor	Annex B3 of European Technical Assessment

ETA- 22/0760

Intended use - data

CHEFIX - VE-PLUS

Page 13 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Table B3 - parameters: drilli	ng, hole cleaning and installation	
Instructions for use - Hammer	drilling (HD) and Compressed air drilling (C	CD)
Bore hole drilling		
	Drill hole in the substrate to the required emb appropriately sized carbide drill bit.	redment depth using the
Bore hole cleaning Just before	e setting an anchor, the bore hole must be free	of dust and debris.
a) Manual air cleaning (MAC) f	or all bore hole diameters d₀ ≤ 24mm and bore	hole depth h₀≤ 10d
X 4	The Lucius manual pump shall be used for bl diameters d₀ ≤ 24mm and embedment depths Blow out at least 4 times from the back of the	s up to h _{ef} ≤ 10d.
	needed.	and the second s
X 4	Brush 4 times with the specified brush size (s Lucius steel brush to the back of the hole (if r twisting motion and removing it.	
X 4	Blow out again with manual pump at least 4 t	imes.
b) Compressed air cleaning (C	AC) for all bore hole diameters do and all bore I	hole depths
*** X 2	Blow 2 times from the back of the hole (if nee the whole length with oil-free compressed air	
X 2	Brush 2 times with the specified brush size (s Lucius steel brush to the back of the hole (if r twisting motion and removing it.	
6 Bar X 2	Blow out again with compressed air at least 2	2 times.
Vinylester Resin withou	t Styrene fast curing chemical anchor	Annex B4
	Procedure (1)	of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS

Page 14 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Instructions for use - Hollow drill bits for dust free drilling Bore hole drilling and cleaning Select a suitable hollow drill bit (see table B1) and install it into the hammer drilling machine. Connect the dust extraction system to the aperture in the hollow drill bit. (e.g.: Bosch® system) Drill hole to the required embedment depth with the hammer drill set in rotation-hammer mode and with the dust extraction system working permanently at full power. Bore hole cleaning: Manual cleaning is not necessary when using the self-cleaning drilling method. Table B4 - parameters: After cleaning injection and installation of the stud/rebar **.** Remove the threaded cap from the cartridge. Cut open the foil bag if necessary. Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer. Insert the cartridge into the Lucius dispenser gun. Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Each time when the mixer is changed, new discard of waste is needed until the colour is homogeneous. Discard quantities are 10 cm for all cartridges Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth. Before use, verify that the threaded rod is dry and free of contaminants. Install the threaded rod to the required embedment depth during the open gel time t_{gel} has elapsed. The working time t_{gel} is given in Table B2. The anchor can be loaded after the required curing time t_{cure} (see Table B2). The applied torque shall not exceed the values T_{max} given in Table A1. Annex B5 Vinylester Resin without Styrene fast curing chemical anchor of European Technical Assessment Procedure (2) ETA- 22/0760

CHEFIX - VE-PLUS

Page 15 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Size			1	M8	M10	M12	M16	M20	M2
	s section area	As	[mm ²]	36.6	58	84.3	157	245	35
Chai	racteristic tension resistance, Steel failure								
Steel	, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	14
Steel	Steel, Property class 5.6 and 5.8		[kN]	18	29	42	78	122	17
Steel, Property class 8.8 Steel, Property class 10.9		$N_{Rk,s}$	[kN]	29	46	67	125	196	28
Steel, Property class 10.9		$N_{Rk,s}$	[kN]	37	58	84	157	245	35
Steel	pel, Property class 12.9 N _{Rk,s} [kN] 44 70 101 188 294		42						
Stain	less steel A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	17
Stain	less steel A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	24
Stain	less steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	28
Chai	racteristic tension resistance, Partial factor								
Steel	, Property class 4.6 and 5.6	γ _{Ms,N} 1)	[-]			2	2,0		
Steel	, Property class 4.8, 5.8 and 8.8	γ _{Ms,N} 1)	[-]			1	,5		
Steel	Steel, Property class 10.9 and 12.9		[-]			1	.4		
Stainless steel A2, A4 and HCR, Property class 50		γ _{Ms,N} 1)	[-]			2,	86		
Stainless steel A2, A4 and HCR, Property class 70		γ _{Ms,N} 1)	[-]			1,	87		
Stainless steel A4 and HCR, Property class 80		γ _{Ms,N} 1)	[-]			1	,6		
Chai	racteristic shear resistance, Steel failure								
	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	7	12	17	31	49	7
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88
	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	14
ver	Steel, Property class 10.9	$V^0_{Rk,s}$	[kN]	18	29	42	79	123	17
nt le	Steel, Property class 12.9	$V^0_{Rk,s}$	[kN]	22	35	51	94	147	21
Nithout lever arm	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88
>	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	12
	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	14
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	44
	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	56
E	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	89
With lever arm	Steel, Property class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	11:
lev V	Steel, Property class 12.9	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	778	134
With	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	56
	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	78
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	89
Chai	racteristic shear resistance, Partial factor		1	I	1	1	1	1	
Steel	, Property class 4.6 and 5.6	γ _{Ms,V} 1)	[-]			1,	67		
	Steel, Property class 4.8, 5.8 and 8.8		[-]	1,25					
	, Property class 10.9 and 12.9	ΥMs,V 1) ΥMs,V 1)	[-]				50		
	less steel A2, A4 and HCR, Property class 50	YMs,V 1)	[-]				38		
	less steel A2, A4 and HCR, Property class 70	YMs,V 1)	[-]						
200111	, , , , , and , , or , , , oport, oldoo 10	, 1110, V	1.1	1,56 1,33					

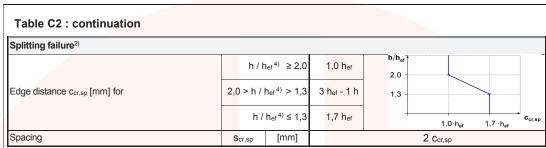
¹⁾ in absence of national regulation

Vinylester Resin without Styrene fast curing chemical anchor

Performance for static and quasi-static loads: Resistances

Annex C1 of European Technical Assessment ETA- 22/0760

CHEFIX - VE-PLUS


Page 16 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Anchor size threaded rod			M8	M10	M12	M16	M20	M24
Steel failure						•	•	
Characteristic tension resistance	N _{Rk,s}	[kN]			see Ta	ble C1		
Partial factor	YMs,N	[-]		see Table C1				
Combined Pull-out and Concrete cone failure 2)	*	•						
Characteristic bond resistance in concrete C20/2	5 – dry c	or wet con	crete for	hammer	drilling	(HD) and	CD	
Temperature range 40°C/24°C non-cracked concrete	Rk,ucr	[N/mm²]	11	10	10	9,5	9	8,5
Temperature range 40°C/24°C cracked concrete	Rk,cr	[N/mm²]	3,5	3,5	3	3,5	3,5	3,5
Partial safety factor – dry or wet concrete	inst	[-]		1,2			1,4	
Characteristic bond resistance in non-cracked co	ncrete C	20/25 – fl c	oded h	oles for h	ammer d	Irilling (H	ID)	
Temperature range 40°C/24°C non-cracked concrete	⊠ _{Rk,ucr}	[N/mm²]	11	10	10	9	7,5	7
Temperature range 40°C/24°C cracked concrete	Rk,cr	[N/mm²]	3,5	3,5	3	3,5	3	3
Partial safety factor – flooded holes	inst	[-]	,	1,2		1,4	1	
Characteristic bond resistance in non-cracked concrete	e C20/25 -	dry or we	t concret	e for hollo	w drill bits	s (HDB) –	dust free	systen
Temperature range 40°C/24°C non-cracked concrete	⊠ _{Rk,ucr}	[N/mm²]	7	7	7.5	8	8	8.5
emperature range 40°C/24°C cracked concrete		[N/mm²]	3,5	3,5	4	3,5	3,5	3,5
Partial safety factor – dry or wet concrete	inst [-]		1,2				1,4	
Increasing factor for Rk,ucr		C30/37		1,08				1,00
in non-cracked for hammer drilling	С	C40/50						1,00
		C50/60	4.00	1,20				1,00
Increasing factor for Rk,cr in cracked concrete for hammer drilling		C30/37 C40/50	1,08 1,15	1,00				
	С	C50/60	1,20	1,00				
		C30/37		1,00				
Increasing factor for Rk,ucr in non-cracked concrete for hollow drilling	С	C40/50		1,00				
To Hollow drilling		C50/60		1,00				
Increasing factor for in graphed concrete for		C30/37	1,20	1,00				
Increasing factor for Rk,cr in cracked concrete for hollow drilling	С	C40/50	1,36	1,00				
Reduction factor in cracked or non-cracked	Ψ ⁰ sus	C50/60 [-]	1,50 1,00					
concrete C20/25 for all drilling methods Factor for determination of the concrete cone failure	k _{ucr,N}	[-]		11,0 (base	d on concre	ete cylinde	r strength f	ck)
Factor for determination of the concrete cone failure	k _{cr,N}	[-]			7	7,7		
Edge distance for concrete cone failure	C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance for concrete cone failure	S _{cr,N}	[mm]			2 (Ccr,N		
Vinylester Resin without Styrene fast Performance for static, quasi-si			anchor			of E	nex C2 uropean l Assessn	nent

CHEFIX - VE-PLUS

Page 17 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

¹⁾ In absence of national regulations ²⁾ Calculation of concrete and splitting, see annex B1

Table C3: Displacements under tension load

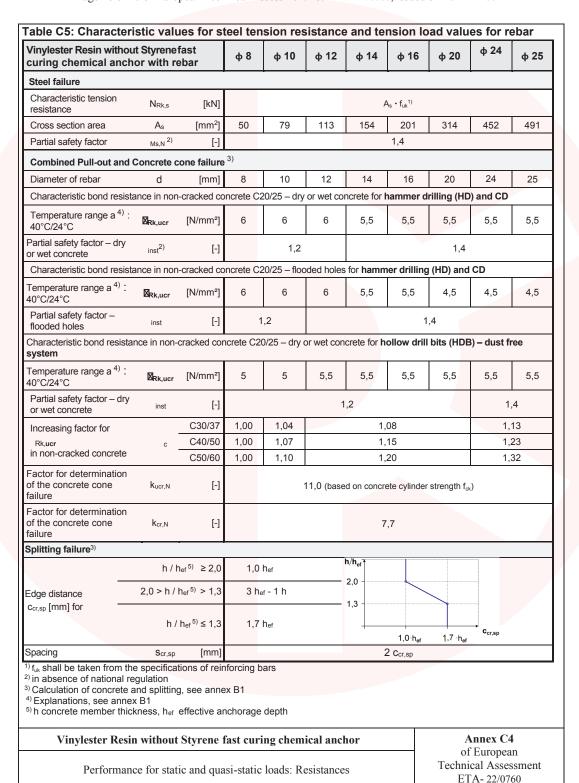
Vinylester Resin wit chemical anchor v With Hammer drill drilling (CD)	with threade	d rods	M8	M10	M12	M16	M20	M24
Temperature range	a ⁵⁾ : 40°C / 24	P°C						
Displacement	δηο	[mm/(N/mm ²)]	0,11	0,11	0,10	0,11	0,12	0,10
Displacement	δ_N	[mm/(N/mm ²)]	0,28	0,18	0,82	0,76	0,22	0,30
Vinylester Resin wit chemical anchor v for Hollow drilling	with threade	d rods	M8	M10	M12	M16	M20	M24
Temperature range	a ⁵⁾ : 40°C / 24	l°C						
Displacement	δηο	[mm/(N/mm ²)]	0,10	0,12	0,15	0,14	0,14	0,13
Displacement	δ_{N}	[mm/(N/mm ²)]	0,49	0,19	0,38	0,52	0,14	0,19

⁵⁾ Explanation see annex B1

Table C4: Displacements under shear load for all types of drilling for threaded rods

_	out Styrene fast curing che with threaded rods	mical	M8	M10	M12	M16	M20	M24
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δν	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

Vinylester Resin without Styrene fast curing chemical anchor	Annex C3 of European
Performance for static, quasi-static and seismic loads: Displacements	Technical Assessment ETA- 22/0760


³⁾ Explanations, see annex B1

⁴⁾ h concrete member thickness, h_{ef} effective anchorage depth

CHEFIX - VE-PLUS

Page 18 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

ETA-22/0760

CHEFIX - VE-PLUS

Page 19 of 20 of European Technical Assessment no. ETA- 22/0760, issued on 2022-11-07

Vinylester Resin w chemical anchor drilling (HD) and	with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 24/ ф 25
Temperature range	a ⁴⁾ : 40°C /	24°C								
Displacement	δηο	[mm/(l	\/mm²)]	0,03	0,03	0,04	0,04	0,07	0,07	0,10
Displacement	δ _N	[mm/(l	\/mm²)]	0,11	0,11	0,15	0,21	0,26	0,26	0,38
Vinylester Resin w chemical anchor drilling dust free	with rebar	for hollov		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Temperature range	a ⁴⁾ : 40°C /	24°C								
Displacement	δ_{N0}	[mm/(l	\/mm²)]	0,16	0,10	0,03	0,03	0,04	0,04	0,04
Displacement	δn	[mm/(l	N/mm ²)]	0,75	0,45	0,15	0,16	0,17	0,18	0,19
ble C7: Charac	teristic ste	el shear	resista	ance for	rebar					
Vinylester Resin w chen	vithout Styre nical ancho			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Steel failure withou	ut lever arm									
Characteristic shear i	resistance	$V_{Rk,s}$	[kN]			0,	50 • A _s • f _t	ık ¹⁾		
Cross section area		As	[mm ²]	50	79	113	154	201	314	491
Partial safety factor		Ms,N ²⁾	[-]				1,5		•	
Steel failure with le	ever arm		•							
Characteristic bendin		M ⁰ _{Rk,s}	[Nm]			1.	.2 • W _{el} • f _u	ık ¹⁾		
Elastic section modul	lus	Wel	[Nm]	50	98	170	269	402	785	1534
Partial safety factor		Ms,N ²⁾	[-]				1,5		1	1
Concrete pryout fail	lure						· ·			
Factor		k ₈	[-]		1,0 2,0		for h _{ef} < 6 or h _{ef} ≥ 60r			
Partial safety factor		γмс	[-]		2,0	10	1,5			
Concrete edge failu	re	1.110					-,-			
		1)					4.5			
Partial safety factor		Mc ¹⁾	[-]				1,5			
f _{uk} shall be taken from the land of the	al regulations				ebar T					
Vinylester Resin w chem	vithout Styre nical ancho			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Displacement	δνο	[r	nm/kN]	0,05	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δ_V	[r	nm/kN]	0,08	0,08	0,07	0,06	0,06	0,05	0,05
Vinylester Re	esin without	Styrene	fast cur	ing chen	nical and	chor			Annex C5 Europea	

Performance for static and quasi-static loads: Resistances

CHEFIX - VE-PLUS

ESSENTIAL CHARACTERISTICS	PERFORMANCE	
Resistance to fire	No performance assessed	
Table C10: Reaction to fire		
ESSENTIAL CHARACTERISTICS	PERFORMANCE	
Reaction to fire	In the final application, the thickness of the most of the mortar is material classifie 96/603/EC. Therefore, it may be assume mortar or a mixture of synthetic mortar a with the metal anchor in the end use apport of the fully developed fire and they ha	d class A1 according to EC Decision and that the bonding material (synthetian and cementitious mortar) in connection dication do not contribute to fire grow
Vinylester Resin without Styr	rene fast curing chemical anchor	Annex C6 of European